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Abstract
Applying a stochastic scheme we show how to obtain the density profile of a
suspension of weakly interacting charged colloids in a steady state situation.
The density profile corresponds to the set of macroions and depends of the
electrophoretic velocity and the self-diffusion, as observed in experiments on
dilute solutions of charged colloids. Our approach permits us to observe the
deviation of the density profile from an ideal case when the pair interactions
between the macroions are important and permits a better interpretation of
such experiments. For the case of colloids with tuning interactions under a
temperature gradient we obtain the behaviour of the collective diffusion and the
thermal diffusion of the particles in terms of the volume fraction. This result
could be important for understanding the boosting of DNA in thermocapillary
traps.

1. Introduction

Our system is a set of colloids under both an external field and a temperature gradient. As
a first case we study the system under an external electric field and at constant temperature,
describing the dynamics of the suspension of charged colloids (macroions) in a steady state
situation. Taking into account that colloids are Brownian particles, it is important to choose a
stochastic approach to describe their dynamics; if additionally the system is out of equilibrium,
the goal concerns an appropriate description of the interaction between the particles and the
heat bath (a solvent which includes electrolytes). It was recently shown how the methods
of non-equilibrium thermodynamics help one to obtain the intrinsic stochastic dynamics of
non-equilibrium Brownian motion of interacting particles, described through Fokker–Planck
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equations [1, 2]. This scheme will establish a unified description of mass transport processes
and structural properties of electrophoresis and thermophoresis in colloids. Following such
methods it is easy to show that the Brownian motion of interacting colloids under a temperature
gradient and an external field can be described by the following Fokker–Planck equation [3]:
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In the previous equation we identify direct (effective) short range interactions accounted for
by V eff (which includes the effect of electrolytes), hydrodynamic interactions quantified by

the friction coefficients
↔
β (hydrodynamic friction),

↔
γ (thermal acceleration), together with

the external forces—both thermodynamic (temperature gradient) and the conservative one—
and their interrelations involved in the stochastic dynamic description. The average values
for the conservative thermodynamic fields, namely, the density ρB, density of momentum
ρBuB and the density of energy ρBε, can be calculated through the corresponding integrations
of the two-particle distribution function. Using the stochastic equation (1), together with
some mathematical manipulations, and using the appropriate boundary conditions for the
distribution function, we obtain the hydrodynamic equations for the Brownian particles [4].
We will show, in the following two sections, how the hydrodynamics contained in the mass
and the momentum balance lead to the description of two different phenomena in colloids,
electrophoresis and thermophoresis. In electrophoresis, for the particular case in which the
flux of macroions, driven by the gradient of their concentration, is opposite to an external
electric field we describe a steady state which produces a still concentration profile. Such a
profile has been observed experimentally [7] and our approach permits an interpretation in
terms of the electrophoretic velocity, the self-diffusion and the effective interaction between
macroions. This is an extension of a recent interpretation of such experiments for a solution
of non-interacting macroions [8]. When colloids are under an external temperature gradient,
we describe the migration of particles driven by the variation of surface tension with respect
to temperature. This phenomenon is accounted for by the thermal diffusion which is a cross
effect predicted by irreversible thermodynamics.

2. Steady state electrophoresis of interacting macroions

Using the above stochastic equation, for an isothermal case and under an external electric field,
we have a description of the Brownian motion, where the external force induces a systematic
motion in the particles. If such a force is enough to surmount the Brownian motion, we observe
that the particles have a terminal velocity as usually occurs in electrophoretic experiments. The
physical phenomenon that we address is concerned with the fact that the force exerted over
the macroions is small enough for one to consider that the Brownian motion is an important
ingredient, such that the macroions obey Fick’s law. In this situation we have a competition
between two forces, namely, the usual one associated with the random movement due to the
thermal fluctuations of the solvent that induces the migration of particles to a region of lower
concentration and the motion induced by the electrical field over the macroions. When the two
forces are in opposite directions, the particles only have thermal motion and their concentration
profile is maintained as in a stationary state. This phenomenon has been successfully used
for measuring properties of macroions, and on this basis electrophoretic cells have recently
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been developed [7, 9]. To study this phenomenon, we obtain the momentum balance for the
macroions in solution from equation (1):

ρB
∂uB

∂ t
= −∇ · ↔

PB − ↔
β · ρBuB − ρB

∇V ext

m
. (2)

The mathematical details of the derivation of the above hydrodynamic equation have been
reported before [2, 3], and for the purpose of this paper we will only mention that the

pressure tensor has two parts,
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for the negligible variation of P(2) around the distance of separation between the particles. This
condition permits one to express the probability density P(2) in a Taylor’s expansion around
the distance r = r2 − r1 between particles; hence the spatial gradient of P(2)—which is
related to the mean force between particles—has a small variation over the distance of interest,
and allows us to keep only the lower term in the expansion and identify the pressure tensor
in the momentum balance [5, 6]. The pressure tensor can be split into its irreducible parts,

namely,
↔
PB(r1, t) = p

↔
I +

↔
π where p is the hydrostatic pressure and physically represents

the pressure exerted by the Brownian particles on the solvent, i.e., the osmotic pressure, and
mathematically is a virial equation of state, namely, p = ρB
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with r = |r|, where it is important to emphasize that even if V eff represents a pair interaction
potential between the particles, it accounts for the effects of the solvent. Here

↔
π is the viscous

tensor which we consider negligible since there is no shear acting upon the system and we
consider an incompressible fluid. The trace of the pressure tensor permits one to obtain
the hydrostatic pressure (osmotic pressure) which results in a virial equation of state with an
effective interaction potential accounting for the effects of the solvent. If we neglect the effects
of a velocity gradient, then we only account for the force due to the gradient of the osmotic
pressure of the particles, and for long times, i.e., in the diffusive regime, the above momentum
balance leads to the following relation:

∇· ↔
PB= −↔

β · ρBuB − ρB
∇V ext

m
; (3)

defining the flux of particles as j = ρBuB we obtain the following relation:

j = jdiff + jel (4)

where jdiff = −↔
D · ∇ρB (Fick’s law) and jel = −↔

β
−1

· ρB

m ∇V ext (the flux of macroions due
to the external force). The system reaches a steady state when the net flux is equal to zero,
i.e., the thermodynamic force induced by the gradient of the osmotic pressure and the external
force induced by the electric field are equal in magnitude but with opposite directions. This
situation is accounted for by the relation jdiff + jel = 0. Experimentally, as Godfrey describes,
after applying the electric field the macroions move towards the semipermeable membrane:
‘The macroions are stopped by the membrane, the concentration of macroions increases next to
the membrane surface and the concentration gradient thus formed produced a diffusion-driven
back-flow of macroions. In time, the macroion concentration gradient stabilizes; at every point
in the gradient, macroion flow due to the electrical field is countered, exactly, by macroion
flow due to diffusion’. This means that if we turn off the electric field, the macroions move in
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a collective manner with an average velocity uel defined by jel = −jdiff = ρBuel. In this steady
state and over the x , the last equation can be rewritten as the following differential equation:
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where g(r) is the usual equilibrium pair correlation function. We should note that the above
equilibrium condition differs from the widely used equilibrium condition between electrostatic
external force and the friction of the macroion in the solvent, namely, Qeff E = vel f where
Qeff is the ‘effective charge’ of the particle, E the electric field and f the friction coefficient.
The difference between uel and vel is that the first one is a collective macroscopic quantity that
accounts for the interactions between macroions, while vel corresponds to the velocity of just
one macroion. This last equation should be solved in order to obtain the density profile, and
the needed input is the pair correlation function which must be obtained for a particular model
of interactions between the particles. In order to test our approach, and taking into account that
in Godfrey’s experiments the concentration of macroions is in the range 0.5–2 g l−1, i.e. the
system is diluted and weakly coupling from the electrostatic point of view [10], we use as an
effective potential a hard core part plus a repulsive Yukawa tail:

V eff =



∞ for r/σ < 1

ε
exp[b(r/σ − 1)]

r/σ
for r/σ > 1.

(7)

Here ε and b play the role of effective parameters for fitting the experimental data. On the other
hand, we solve the Ornstein–Zernike integral equation in the Fourier space by iteration [11]
using the hypernetted-chain (HNC) closure. When the interactions between macroions are
neglected, i.e., in the infinite dilution regime, we obtain from equation (6) the density profile

ρB(x) = ρB(x0) exp[uel(x − x0)D−1
0 ], (8)

where uel is the electrophoretic velocity, D0 the self-diffusion coefficient and ρB(x0) the density
next to the membrane in the electrophoretic cell. We can consider this profile an ideal one,
so any deviation from ideality could be due to the interactions between the particles (e.g.,
proteins). In figure 1 we reproduce the density profile (ideal case) observed by Godfrey [7] for
bovine serum albumin (BSA). It is important to note that the same profile can be reproduced
with the model of a soft repulsive potential mentioned above. As, in the ideal case, the
interactions between the particles are neglected, the corresponding soft particles should have
a small hydrodynamic radius (small effective diameter) in order to occupy the same volume
fraction; i.e., if we have an ideal solution and a non-ideal one with the same density profile,
then our approach will distinguish between these two systems.

3. Thermophoresis of interacting tunable colloids

When the colloidal system is under an external temperature gradient, the stochastic equation (1)
leads to the hydrodynamic equations describing the macroscopic behaviour of this non-
equilibrium situation. In the diffusive regime the flux of particles follows a dynamics similar
(from the mathematical point of view) to that in the steady state electrophoresis, namely,

j = −↔
D · ∇ρB − ↔

DT · ∇T

T
, (9)



Interactions in electrophoresis and thermophoresis of colloids S2075

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x (mm)

Φ
/Φ

0

Figure 1. The density profile: 	
	0

represents the ratio of the volume fraction of macroions. 	0

corresponds to the density next to the membrane in the electrophoretic cell. The full curve (——)
stands for the experiments of Godfrey, while the remaining discontinuous curves are for interacting
particles. The dashed curve (- - - -) was obtained with ε = 0.1kT and the chain curve (— · —)
was obtained with ε = 0.05kT . The full circles • fit the ideal profile with ε = 0.01kT . All the
curves are calculated for b = 5 and x denotes the distance along the direction of the electric field.

where
↔
DT is the thermal diffusion described by the following expression:
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In this expression it is important to observe that
↔
γ stands for the thermal acceleration,

which has been shown to be the ratio of the thermal mobility and the usual collective mobility
(sedimentation coefficient). One additional fact is concerned with the derivative of the pair
correlation function with respect to the temperature.

In figure 2(a), using the Yukawa model, we reproduce the behaviour of the collective
diffusion, observed in the light scattering experiments in microemulsions of Cazabat et al for
a very low volume fraction. The decay of such a coefficient is a signature of the effective
attractive interactions between particles; i.e., the particles are closer when the concentration
increases. The slightly deviation between the theoretical and the experimental curve is due
to the fact that the authors performed a linear fit over the experimental data. On the other
hand, we are interested in the effect of the effective repulsive interactions in the transport of
particles. The simplest way to investigate this is by changing the sign of the Yukawa potential;
i.e., now we use ε > 0. After doing this, we observe the result in figure 2(b), which shows
an inverted behaviour of the coefficients in comparison with the previous case—namely, the
thermal diffusion now decreases in a linear way and the collective diffusion shows a non-
linear change increasing initially upwards to a maximum value and afterwards decreasing.
We interpret such changes as a transition of the potential of mean force (pmf), defined as
W = −kT ln(g(r)), from repulsive to attractive interactions. In order to test this hypothesis
we calculate the pmf for different volume fractions and we present our results in figure 3.
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Figure 2. Collective D/D0 (- - - -) and thermal DT/DT0 (——) diffusion for attractive (a) and
repulsive (b) effective direct interaction between particles, where DT0 is the thermal diffusion for
one particle. In both cases the potential model was of Yukawa type with parameters ε = 0.66kT
and b = 2.9. D/Dexp

0 (•) is the experimental linear fit used by Cazabat et al.
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Figure 3. The pmf W shows a transition from a purely repulsive interaction (	 = 0.01; · · · · · ·),
a soft core with a small attractive well (	 = 0.03; - - - -), a hard core with a more developed
attraction (	 = 0.12; — · —) and the fully entropic attraction (	 = 0.2; ——).

The changing in the behaviour of the pmf shows how the increasing of the diffusion corresponds
to a purely repulsive pmf, and when the diffusion decreases the pmf initially shows an attractive
well which eventually increases towards exclusivity until an attractive interaction arises at the
contact point. This last phenomenon corresponds to an entropically driven attraction between
particles.
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4. Discussion

Using a stochastic description, compatible with the methods of irreversible thermodynamics,
we describe the diffusive regime of a system composed of colloidal interacting particles
either subject to an external electric field or under a temperature gradient. Both phenomena
correspond to non-equilibrium stationary states; i.e., the relevant variables are time
independent. In this regime the density profile of macroions is still in the electrophoretic
experiment condition, while the temperature profile is fixed in the thermophoretic case. In
order to test our approach, we obtain analytically the density profile observed in a steady state
electrophoresis experiment for a dilute solution. When we account for the interaction between
macroions, we find, as in the non-interacting case, an exponential decay of the density. This
leads us to observe that the ideal density profile has an equivalent profile composed from soft
repulsive particles. In this sense our scheme is useful for interpreting, in a more detailed manner,
a steady profile of macroions in terms of the electrophoretic velocity, the self-diffusion and an
appropriate interaction potential between particles. Our calculations were performed for the
low concentration regime and the solvent was treated as a continuum. Including the discrete
nature of the solvent, the electrostatic correlations [12] between the ions of the electrolyte
solution and the asymmetry in the valence and the sizes of ions [13] would lead to a better
description with a richer phenomenology, for example overcharging in colloids [14]. In the
case of thermophoresis, the resulting expression for the collective diffusion and the thermal
diffusion depend on the interactions between the colloids and on the equilibrium behaviour of
the pair correlation function. Even if our approach were valid for any short range continuous
potential, our procedure in this case would be to fit the parameters of an interaction potential
with the Yukawa functional form. With this input we are able to reproduce the tendency
of collective diffusion from experimental data for microemulsions in the low concentration
regime. We used in this case undeformed droplets as a model of particles, such that we
account for the variation of surface tension with respect to temperature as the main mechanism
of the driving force for the migration of droplets along the temperature gradient. Analysing the
potential of mean force we can interpret the effects of interactions in the collective diffusion
when we use a soft repulsive potential. In this case the change of the behaviour of such a
coefficient with respect to the volume fraction was driven at first energetically; afterwards,
when it was due to an increasing of the volume fraction, we found that the attraction between
particles was an entropic effect. In the case of the thermal diffusion it was interesting to note
that in both cases, whether the tail of the direct interaction was repulsive or attractive, the
coefficient showed a decay with respect to the volume fraction. However, with the attractive
tail the thermal diffusion’s behaviour changes and starts to be enhanced; it would be interesting
to apply these results to other phenomena ranging across magnetic colloids [15], micelles [16],
polymers [17], aerosols [18] and the trapping of DNA with a temperature gradient [19].

Acknowledgments

MM acknowledges fruitful discussions with Professors J M Rubı́ and D Frenkel during
the ASTATPHYS-MEX-2003 conference. The financial support from CONACyT project
41621-F is also acknowledged. OH-F acknowledges a CONACyT scholarship. The authors
acknowledge Dr L Romero-Salazar for a critical reading of the manuscript.

References

[1] Rubı́ J M and Mazur P 1998 Physica A 250 253
[2] Mayorga M, Romero-Salazar L and Rubı́ J M 2002 Physica A 307 297



S2078 O A Hernández-Flores and M Mayorga

[3] Mayorga M, Hernández-Flores O A and Romero-Salazar L 2003 Recent Research Developments in Molecular
Physics ed S G Pandalai (India: Transworld Research Network) at press

[4] Mayorga M, Dominguez B and Romero-Salazar L 2002 Mol. Phys. 100 3155
[5] Ferziger J H and Kaper H G 1972 Mathematical Theory of Transport Processes in Gases (Amsterdam: North-

Holland)
[6] Irving J H and Kirkwood J G 1959 J. Chem. Phys. 18 817
[7] Godfrey J E 1989 Proc. Natl Acad. Sci. 86 4479
[8] Stigter D 2000 J. Phys. Chem. B 104 3402
[9] Laue T M et al 1996 J. Pharm. Sci. 85 1331

[10] Hansen J P and Lowen H 2000 Annu. Rev. Phys. Chem. 51 209
[11] See for example: Lado F 1967 J. Chem. Phys. 47 4828
[12] Levin Y 2002 Rep. Prog. Phys. 65 1577
[13] Tanaka M 2003 Phys. Rev. E 68 061501
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